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Abstract 

On the basis o f  simple kinematic  arguments  it is shown tha t  any quant i ty ,  depending only 
on the  nature  and velocity of  a particle, tha t  is conserved in a collision mus t ,  in classical 
mechanics,  be o f  the  form h + ZiuWi + ~wo 2 or in relativistic mechanics  o f  the  form 

+ Zi~ivi[1 _ (v2/c2)] -1/2 + re[1 - (v'2/e2)] -1/2 where ~., #i, and v are particle parameters.  

1. Introduction 

If two free particles a and b collide, and one or more free particles c, d . . . . .  
emerge from the collision, there are quantities depending only on the intrinsic 
nature of the particles and their velocities that are conserved; that is, it is 
possible to associate with each particle a quantity g that is a function of its 
nature and its velocity and that satisfies the condition 

g[a, v(a)] +g[b, v(b)] =g[c, v(c)] +g[d, v(d)] + - - .  (1.1) 

In classical dynamics the mass m and the momentum mv are always conserved, 
and the kinetic energy ½my 2 is sometimes conserved. In relativistic dynamics the 
momentum mv[1 - (v2/e2)] -1/2 and the energy me 2 [1 - (v2/e2)] -1/2 are 
always conserved, and the mass m is sometimes conserved. 

Depending upon one's point of  view, either the conservation theorems are 
consequences of the fundamental equations of dynamics, or they are the 
fundamental principles from which all other dynamical results follow. From 
the first viewpoint the basic principle of dynamics is the fact that particles 
subjected to the same force will experience the same time rate of change of 
momentum. From this viewpoint force is a primary quantity. From the 
second viewpoint the basic principle is the conservation of momentum, and 
force is simply a secondary quantity, equal by definition to the time rate 
of change of the momentum. From either viewpoint the critical problem is 
the definition of momentum. 
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The fundamental characteristic of the momentum of a particle is that it 
is a conserved quantity. It is therefore natural to ask, when seeking a definition 
of momentum, what quantities can possibly be conserved? In this paper and 
a subsequent paper, I will show on the basis of elementary, plausible, and 
easily verified kinematic arguments-arguments that do not presuppose any 
equation of motion but rest on the general concepts of motion-inertial frames, 
and the law of transformation between inertial frames, that the possible forms 
of conserved quantities are extremely limited. In particular, in this paper, I 
will show that if one assumes (I) any quantity that is conserved must be con- 
served in all inertial frames; and (2) when two identical particles moving along 
a line with the same speed but in opposite directions collide, then it is possible 
for the same particles to emerge moving with their original speeds and in 
opposite directions but along a different line, and that the directions of the 
line of approach and the line of recession may assume any value; then any 
quantity, depending only on the nature and velocity of a particle, that 
is conserved must, in classical mechanics, be of the form 

g = X + Y~ tllv i + ½w 2 (1.2) 
i 

or in rdativistic mechanics be of the form 

g = ;X + ~ Pivi[1 - (v2/c2)] -1/2 + vc[l  - (/)2/C2)] -1/2 (1.3) 
i 

where X, Pi, and v are particle parameters, that is, quantities that are constant 
for a given particle, but whose values vary from particle to particle. 

In a later paper I will consider other types of collisions and on the basis of 
additional assumptions show that the possible forms of conserved quantities 
can be restricted even further. My reason for breaking the material into two 
parts rather than combining the result into a single unit was threefold: In the 
first place, the result of each paper is useful by itself, and I wanted to make 
either result as accessible as possible. In the second place, the techniques and 
assumptions in the two papers are somewhat different, and I wished to empha- 
size this fact. In the third place, I felt that by breaking the material as I have 
the total result would be easier to understand. 

As far as I am aware the general proof given in this paper has never been 
made, or if it has it is certainly not well known [see for example Smith (1965); 
Helliwelt (1966 )]. Tolman (1912) has shown that if in relativistic dynamics 
there exists a quantity g which is a function of the absolute value v of the 
velocity v, such that g(v) and g(v)v are conserved, then g(v) must be pro- 
portional to [1 - (v2/c2)] -1/2 Others [e.g., Lewis and Tolman (1909); Pauli 
(1921); Weyssenhoff (1935)] have shown that the same result is true if we 
assume only that g(v)v is conserved and do not initially assume that g(v) is 
conserved. Still others [e.g., Ehlers e t  al. (1965)] have shown that the above 
result is also true if we assume only that g(v) is conserved and do not initially 
assume that g(v)v is conserved. Arzelies (1972) has given a brief outline of some 
of these approaches with appropriate references. The initial restriction to con- 
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served quantities of tile form g(v) and g(v)v is ordinarily justified on the basis 
that one is seeking to generalize the results of classical mechanics, where it is 
known that m and mv are conserved quantities [e.g., Bergmann (1942), 
Moller (1972)]. If one considers only conserved quantities that are vectors, it 
can be argued that such a vector must be of the form g(v)v (Weyssenhoff, 1935; 
Taylor and Wheeler, 1963). Longmire (1963) has shown, for a classical collision, 
that if momentum and kinetic energy are conserved, then any other conserved 
quantity must be a linear combination of the kinetic energy and the compon- 
ents of the momentum. All of the above results are simply special cases of the 
results obtained in this and the following paper. 

2. Conserved Quantities in Classical Collisions 

If two identical particles moving with velocities that in a given inertial 
frame S are equal in magnitude but opposite in direction collide, then from 
symmetry we expect as a possible result of this collision the emergence of the 
same two particles with the same speeds but with the two directions rotated 
through some common but arbitrary angle. It follows that if there is a con- 
served quantity g(v) associated with the given type of particle, then we expect 
it to satisfy the equation 

g(vn) + g( -vn)  = g(vn*) + g(-vn*)  (2. l)  

where v is the speed of each particle, n is a unit vector parallel to the directions 
of the precollision velocities, and n* is a unit vector parallel to the directions of 
the postcollision velocities. 

If there exists a quantity g(v) that is conserved in one inertial frame, then 
we expect it to be conserved in all inertial frames. I fS '  is a frame that is moving 
with a velocity - V  with respect to S, then a particle that is moving with a vel- 
ocity v with respect to S will be moving with a velocity 

v' = V + v  (2.2) 

with respect to S'.  Converting the precollision and postcollision velocities in 
equation (2.1) to the values they would have in frame S',  and assuming g is 
still a conserved quantity, we obtain 

g(V + vn) + g(V - vn) = g(V + vn*) + g(V - vn*) (2.3) 

We expect equation (2.3) to be valid for arbitrary values of v, n, n*, and V. 
This requirement puts severe restrictions on the form of the function g. We 
will now determine what these restrictions are. 

If we take the second derivative of equation (2.3) with respect to v and 
then set v = 0, we obtain 

~ ninjg~](V ) = ~. ~. n*n~g~j(V) (2.4) 
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where 

gi](V) =--- 0 2g(V)/0 V/O V] (2.5) 

Since n and n* in equation (2.4) are arbitrary unit vectors, it follows that the 
function 

f(n)  =- ~. ~. ninjgq (2.6) 
l l 

must be independent of n. Only two of the three components nln 2, and n 3 
are independent, since they must satisfy the condition 

n] = 1 (2.7) 
i 

If we make use of the method of Lagrange multipliers then we can show 
that the function f(n)  will be independent of our choice of  any two of the 
three components n 1, n2, n3 if and only if there exists a constant h such 
that the function 

F ( n ) -  (2.8) 

is independent of our choice of any of the quantities n 1 , n2, and n 3. I fF(n)  
is to be independent of our choice o f n l ,  n2, and n 3 then the partial deriva- 
tives of F with respect to the n i must vanish. In particular 

32F(n)/3niOn] = 0 (2.9) 

Substituting equation (2.8) in equation (2.9) we obtain 

gi/=h6q (2.10) 

Recalling that gq is a function of V and noting that h, though not a function 
of n, may be a function of V, we can rewrite equation (2.10) as follows: 

gq(V) = h(V)3#. (2.11) 

To determine h(V) we note first that 

gijk =hk~q (2.12) 

where 

hk =-- 3h(V)/OVk (2.13) 

The derivative gqk is equal to the derivative gkfi, and hence 

hi6ki = hk6 6 (2.14) 

Choosing i ~ / =  k we obtain 

hi = 0 (2 .15)  

Since all three partial derivatives of h vanish, it follows that 

h = v (2.16) 
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where v is a constant. Substituting equation (2.16) into equation (2.11) we 
obtain 

gq(V) = v~q (2.t 7) 

Equation (2.17) provides us with all the second derivatives ofg.  If we solve 
for g we obtain 

g ( V )  = ~k "t- ~ [.liV i + ~p V  2 (2.t8) 
i 

where X,/~1,/~2, #3, and v are constants. 
We have shown that if equation (2.3) is true for arbitrary values of v, V, 

n, and n* then g must be of the form given by equation (2.18). Conversely it 
can be shown by direct substitution that i f g  is of the form given by equation 
(2.18) then equation (2.3) is satisfied for all values of v, V, n, and n*. 

3. Conserved Quantities in Relativistic Collisions 

The same program that we followed for classical collisions can be followed 
for relativistic collisions. The mathematics can be simplified if instead of 
dealing with the velocities v and V we define the following quantities: 

u----Tv (3.1) 

3' -=- [1 - (v2 /c2) ] -1 /2  _= [1 + (u2/c2)] 1/2 (3.2) 

u - r v  (3 .3)  

P - [1 - (V2/c2)] -1/2 - [1 + (U2/c2)] 1/2 (3.4) 

These are obviously better choices of  variables than v and V, since there is 
no restriction on the values of u and U, whereas v and V are restricted to 
values for which v and V are less than c. 

By the same arguments used in the preceding discussion ifg(u) is a con- 
served quantity then we expect it to satisfy the equation 

g(un) + g ( - u n )  = g(un*) + g ( -un* )  (3.5) 

If  we transform the values o f u  to those that they would have in a frame S'  
moving with a velocity - V  with respect to S, noting that the relativistic law 
of transformation for u is 

u' = u +3,U + [(P - 1)(U. u)U/U 2 ] (3.6) 

we obtain 

where 

g(vU + ua) + g(3,U - ua) = g(TU + ua*) + g(3'U - ua*) (3.7) 

a =- n + [ ( c  - 1 ) ( u .  n ) U / U  ~] (3 .8)  
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or equivalently 
n - a - [ ( F  - 1 ) ( U "  a)U/(ruS)] ( 3 . 9 )  

Since n is a unit vector, the components of a are not aU independent but must 
satisfy the auxiliary condition 

(c2+ U s) ( 1 -  ~i a~)+ ~i ~/ UiUjaia'=O (3.I0) 

which is obtained by squaring equation (3.9) and making use of the definition 
of F given by equation (3.4). 

It follows from the preceding development that ifg(u) is a conserved quan- 
tity then it must satisfy equation (3.7) for arbitrary choices of u and U and 
also for arbitrary choices of a and a* consistent with the constraint condition 
equation (3.10). This requirement puts severe restrictions on the form ofg. 
We shall now determine what these restrictions are. 

If we take the second derivative of equation (3.7) with respect to u, 
remembering that 7 is a function of u, and then set u = 0 we obtain 

~ a~ajgij(U) = ~ ~ a*ai*gij(U ) (3.11) 
i j  i /  

where 
gij(U) - ~2g(U)/3UiOUj (3.12) 

By the same argument we used in the preceding section equation (3.11) 
will be true if and only if there exists a constant h such that the function 

(3.13) 

is independent of our choice of the variables a 1 , a s, and a 3. It follows that 

~2F(a)/~ai~ai = 0 (3.14) 

Substituting equation (3.13) into equation (3.14) we obtain 

gil(U) = h(U)[(c 2 + U2)8i1 - UiU]I (3.15) 

To determine h(U) we note that 

gi]k =hk[(  c2 + U2)8i1- UiUj] + h[2UkSi]- U]Sik- UiS] k] (3.16) 

The derivative gij• is equal to the derivative gkfi and hence 

hk[(C 2 + U2)t~i]- UiUj] + h[2Uk6ij-  Uj6ig - Ui~jk ] =hj[(c s + U2)fki 

-- UkUi] + h[2Uj6ki-  Ui6ki - Ug6ii] (3.17) 

Choosing i 4:] = k we obtain 

(hi/h)[(c 2 + U s) _ Uj 2 ] + (hj/h)UiU ! = - 3 U  t (3.18) 
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Interchanging i and ] in equation (3.18) we obtain 

(h i /h )UiU i + (h]/h)[(c 2 + U 2) - Ui 2 ] = - 3 U  i (3.19) 

Solving equations (3.t8) and (3.19) for (hi /h)  we obtain 

hi/h = -3~}/ (c  2 + U 2) (3.20) 

Equation (3.20) provides us with the three partial derivatives of In h(U). If we 
solve for h we obtain 

h = v(c 2 + U2)  -3/2 (3.21) 

where v is a constant. Substituting equation (3.21) into equation (3.15) we 
obtain 

~ j  = V(C 2 "1" U2) -3/2 [(c 2 + U2)~i j  - UiU]] (3.22) 

Equation (3.22) provides us with all the second derivatives ofg. If we solve 
for g we obtain 

g(U) = )k + ~. IdiUi + V(C 2 + U2) 1/2 (3.23) 
I 

where X, Pl,  P2, and P3 are constants. If we replace U by its definition in terms 
of V we obtain 

g(V)  = X + ~ piVi[1 - (V2/c2)]  - , /2  + re[1 - (VZ/c2)]  -v2  (3.24) 
i 

We have shown that if equation (3.7) is true for arbitrary values of u and U, 
and also arbitrary values of a and a* consistent with the constraint condition 
(3.10) then g must be of the form given by equation (3.24). Conversely it 
can be shown by direct substitution that i fg  is of the form given by equation 
(3.24) then equation (3.7) is satisfied for all values of u and U and also all 
values of a and a* consistent with the constraint condition (3.10). 

4. Conclusion 

In this paper it has been shown on file basis of primarily kinematical argu- 
ments that the possible forms of velocity-dependent conserved quantities are 
extremely limited. In a subsequent paper the problem will be considered 
further. 
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